models.embeddings

class TokenAndPositionEmbedding(keras.src.layers.layer.Layer):

Token and Position Embedding layer for Transformer models.

This layer combines token embeddings and positional embeddings to provide input embeddings for Transformer models.

Parameters:

  • maxlen (int): Maximum length of the input sequence.
  • vocab_size (int): Size of the vocabulary.
  • embed_dim (int): Dimensionality of the embedding vectors.

Example:

>>> embed = TokenAndPositionEmbedding(64, 8008, 1280)
    >>> input_sentence = keras.ops.ones((1, 10))
 
>>> output = embed(input_sentence)

TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)

Initializes the TokenAndPositionEmbedding layer.

Args:

  • maxlen (int): Maximum length of the input sequence.
  • vocab_size (int): Size of the vocabulary.
  • embed_dim (int): Dimensionality of the embedding vectors.
def call(self, x):

Executes the forward pass of the TokenAndPositionEmbedding layer.

Args:

  • x: Input tensor representing token indices.

Returns:

  • keras.Tensor: Output tensor representing the combined embeddings.
Inherited Members
keras.src.layers.layer.Layer
get_build_config
build_from_config
add_variable
add_weight
trainable
variables
trainable_variables
non_trainable_variables
weights
trainable_weights
non_trainable_weights
metrics
metrics_variables
get_weights
set_weights
dtype
compute_dtype
variable_dtype
input_dtype
supports_masking
stateless_call
add_loss
losses
save_own_variables
load_own_variables
count_params
get_config
keras.src.ops.operation.Operation
from_config
input
output